紫云英替代化学氮肥影响红壤水稻土团聚体组成及有机碳分布特征

刘淑军, 周玲红, 唐利忠, 李纲, 高学成, 黄晶, 高菊生

刘淑军,周玲红,唐利忠,等. 紫云英替代化学氮肥影响红壤水稻土团聚体组成及有机碳分布特征[J]. 土壤与作物,2023,12(1):25 − 33. DOI: 10.11689/sc.2022042001
引用本文: 刘淑军,周玲红,唐利忠,等. 紫云英替代化学氮肥影响红壤水稻土团聚体组成及有机碳分布特征[J]. 土壤与作物,2023,12(1):25 − 33. DOI: 10.11689/sc.2022042001
LIU S J,ZHOU L H,TANG L Z,et al. Effects of chemical fertilizer substitution of milk vetch on aggregate composition and organic carbon distribution in red paddy soil[J]. Soils and Crops,2023,12(1):25 − 33. DOI: 10.11689/sc.2022042001
Citation: LIU S J,ZHOU L H,TANG L Z,et al. Effects of chemical fertilizer substitution of milk vetch on aggregate composition and organic carbon distribution in red paddy soil[J]. Soils and Crops,2023,12(1):25 − 33. DOI: 10.11689/sc.2022042001

紫云英替代化学氮肥影响红壤水稻土团聚体组成及有机碳分布特征

基金项目: 国家绿肥产业技术体系(CARS-22-Z09);湖南省自然科学基金项目(2022JJ30648);国家水稻产业技术体系(CARS-01-88);中央级公益性科研院所基本科研业务费专项Y2022LM25
详细信息
    作者简介:

    刘淑军(1984 − ),女,硕士,助理研究员,主要从事土壤培肥与改良相关研究. E-mail: liushujun@caas.cn

    通讯作者:

    高菊生(1963 − ),男,研究员,主要从事绿肥培肥相关研究. E-mail: gaojusheng@caas.cn

  • 中图分类号: S158.3

Effects of chemical fertilizer substitution of milk vetch on aggregate composition and organic carbon distribution in red paddy soil

  • 摘要: 为研究红壤双季稻田紫云英还田替代化学氮肥后土壤团聚体组分及土壤有机碳分布特征,基于2008年开始的紫云英替代化学氮肥定位试验,选择稻-稻-冬闲[常规施肥,NPK(闲)]、稻-稻-紫云英[常规施肥,NPK(紫)]、稻-稻-紫云英[早稻和晚稻均减施20%化学氮肥,0.8N+PK(紫)]和稻-稻-紫云英[早稻和晚稻均减施40%化学氮肥,0.6N+PK(紫)]等4个处理,采用湿筛法对土壤进行团聚体分级,并测定不同粒径团聚体中土壤有机碳含量。结果表明,紫云英还田后,调节氮肥用量显著改变了土壤团聚体组成。平均重量直径(MWD)、几何平均直径(GMD)和>0.25 mm粒级团聚体含量均以NPK(紫)处理最高。与冬闲处理相比,NPK(紫)处理可使>2 mm和0.25 ~ 2 mm团聚体含量提高了15.3%和3.81%。紫云英还田后,与NPK(紫)处理相比,0.8N+PK(紫)和0.6N+PK(紫)处理>2 mm团聚体含量显著降低了41.8% ~ 57.6%(P<0.05)。与冬闲处理相比,冬种紫云英还田并减少氮肥用量显著降低了各粒级团聚体中土壤有机碳含量(P<0.05),但冬种紫云英还田各处理间各粒级团聚体中土壤有机碳含量未见显著差异。NPK(闲)处理不同粒径团聚体中有机碳富集系数均>1,NPK(紫)、0.8N+PK(紫)和0.6N+PK(紫)处理>2 mm和0.25 ~ 2 mm团聚体中的有机碳富集系数>1。土壤MWD和GMD与>2 mm团聚体和0.25 ~ 2 mm团聚体含量呈显著正相关关系(P<0.05),而与团聚体不同粒级中土壤有机碳含量的相关性不显著。可见,在红壤双季稻田进行冬种紫云英还田,有利于优化土壤结构,但不论减氮与否,同时需调节适宜的外源投入碳氮比,从而实现土壤结构稳定和肥力提升。
    Abstract: An experiment with milk vetch input to replace chemical nitrogen fertilizer was established in 2008. This study investigated the soil aggregate composition and soil organic carbon distribution with the wet screening method to classify the aggregates and determine the soil organic carbon content of aggregates with different particle sizes. Four treatments were selected, i.e. rice-rice-winter fallow [conventional fertilization, NPK (fallow)], rice-rice-milk vetch [conventional fertilization, NPK (milk vetch)], rice-rice-milk vetch [20% chemical nitrogen reduction for both early and late rice, 0.8N+PK (milk vetch)] and rice-rice-milk vetch [40% chemical nitrogen reduction for both early and late rice, 0.6N+PK (milk vetch)]. The results showed that the soil aggregate composition was significantly changed by adjusting nitrogen application rate. Mean weight diameter (MWD), geometric mean diameter (GMD) and >0.25 mm soil aggregate content were the highest in the treatment of NPK (milk vetch). Compared with winter fallow treatment, the contents of >2 mm and 0.25 ~ 2 mm aggregate in the treatment of NPK with milk vetch returned to the field increased by 15.3% and 3.81%, respectively, but there was no significant difference. Compared with the normal nitrogen application, the content of >2 mm aggregate was significantly reduced by 41.8% ~ 57.6% in the treatment of 0.6N+PK (milk vetch) and 0.8N+PK (milk vetch) (P<0.05). Compared with winter fallow treatment, amendment of milk vetch to field together with the reduction of nitrogen application significantly reduced soil organic carbon content in aggregates of all particle sizes (P<0.05). However, there was no significant difference in soil organic carbon content in aggregates among treatments after milkvetch returned to the field. The enrichment coefficients of organic carbon in aggregates with different particle sizes treated with NPK (fallow) were all greater than 1. The enrichment coefficients of organic carbon in aggregates >2 mm and 0.25 ~ 2 mm treated with NPK (milk vetch), 0.8N +PK (milk vetch), and 0.6N +PK (milk vetch) were greater than 1. Soil MWD and GMD were positively correlated with the contents of >2 mm aggregate and 0.25 ~ 2 mm aggregate (P<0.05), but not significantly correlated with the content of soil organic carbon in aggregates. In conclusion, the return of milk vetch to red soil under two cropping rice per season may be beneficial to soil structure, but no matter whether nitrogen application is reduced or not, it is still necessary to adjust the carbon to nitrogen ratio of exogenous input to achieve the stability of soil structure and improvement of soil fertility.
  • 土壤团聚体是土壤结构的基本组成单位,也是影响土壤质量的关键因素。一些研究表明,土壤团聚体稳定性的降低加剧了农田土壤的侵蚀,降低了土壤肥力,限制了农业生产力的提高[12]。为保障粮食安全,更详细地了解农田土壤团聚体的稳定性对于农业可持续发展至关重要,因此近10年来有关团聚体的研究在土壤学领域越来越受到重视[34]。土壤团聚体的形成和周转过程中往往伴随着土壤固碳[5],土壤团聚体形成的同时会促进有机碳的增加,而有机碳作为团聚体的胶结物质也影响着团聚体稳定性[6];同时,稳定的团聚体又能够更有效地保护封存于其中的有机碳[7]。土壤团聚体稳定性及有机碳在团聚体中的分布受到耕作方式的调控。冬种紫云英还田已成为当前红壤稻田土壤培肥和提高资源利用效率的主要耕作措施[89]。紫云英还田能增加水稻产量,提高化肥利用率,提升土壤肥力[1011],有研究指出,连续5年绿肥还田提高了土壤团聚体机械稳定性[12]

    土壤大团聚体含量和稳定性,以及土壤有机碳含量,均与施氮量密切相关[13]。相比常规施肥处理,种植翻压紫云英后减施20%和40%化肥处理的土壤有机质含量分别增加3.95%和4.15%,土壤全氮含量分别增加1.22%和1.74%[14]。研究表明,连续4年有机肥配施化肥减量改善了团聚体稳定性,氮肥用量的增加会引起土壤团聚体稳定性下降[15],有机肥替代化肥后能够提高土壤团聚体质量及结构稳定性,且有机肥配施比例越高效果越好[16]。不同氮肥与秸秆配施对团聚体碳、氮分布的影响并不显著[17]。短期减施化肥对土壤团聚体机械稳定性无显著影响,但显著增加了水稳性大团聚体含量[18]。减施20%和40%化肥配施紫云英增加了>0.25 mm团聚体的含量,降低了<0.25 mm团聚体的含量[1920]。可见,减少化肥用量对于土壤团聚体稳定性及团聚体中有机碳的分布的影响研究结果不尽一致。本研究基于2008年开始的紫云英替代化学氮肥定位试验,研究不同处理下土壤团聚体组分及团聚体中土壤有机碳分布特征,以期为紫云英还田下氮肥的合理施用提供科学依据,从而实现红壤双季稻田肥力和生产力的可持续发展。

    本实验位于湖南省祁阳市官山坪村的中国农业科学院红壤实验站监测基地,属于典型亚热带季风气候,年均气温17.8 ℃,年均有效积温(>10℃)的积温为5 648 ℃,年均降雨量1 290 mm,年日照 1 610 ~ 1 620 h,无霜期约293 d,年平均总辐射4 549.38 MJ·m−2。试验田位于红壤丘岗中下部,供试土壤类型为第四纪红色黏土发育的水稻土,质地属于壤质黏土,试验开始于2008年,土壤(0 ~ 20 cm)养分初始性状分别为:pH 6.6,有机质、全氮、全磷和全钾含量分别20.1 g·kg−1、0.9 g·kg−1、0.7 g·kg−1和8.9 g·kg−1;碱解氮、有效磷和速效钾含量分别为120.0 mg·kg−1、24.3 mg·kg−1和42.6 mg·kg−1[21]

    本试验设置4个处理,不同处理施肥量见表1。早、晚稻化肥用量纯N分别为150 kg·hm−2和172.5 kg·hm−2,底肥:追肥=8:2,苗期追施;P2O5分别为90 kg·hm−2和45 kg·hm−2,100%用作底肥;K2O分别为90 kg·hm−2和112.5 kg·hm−2,100%用作底肥;绿肥为紫云英,于盛花期收割。其中,氮肥用尿素(N 46%)、磷肥用过磷酸钙(P2O5 12%)、钾肥用氯化钾(K2O 60%)。冬种紫云英不施肥,供试品种为湘紫1号,湖南省土壤肥料研究所提供[21]

    表  1  不同处理施肥量
    Table  1  Fertilizations under different treatments kg·hm−2
    处理
    Treatment
    施肥情况
    Fertilizer application
    早稻
    Early rice
    晚稻
    Late rice
    NP2O5K2ONP2O5K2O
    NPK(闲)
    NPK(Fallow)
    稻-稻-冬闲,常规施肥
    Rice-rice-winter fallow, conventional fertilization
    1509090172.545112.5
    NPK(紫)
    NPK(Milk vetch)
    稻-稻-紫云英,常规施肥
    Rice-rice-milk vetch, conventional fertilization
    1509090172.545112.5
    0.8N+PK(紫)
    0.8N + PK(Milk vetch)
    稻-稻-紫云英,减氮20%
    Rice-rice-winter fallow, 20% reduction of nitrogen application
    120909013845112.5
    0.6N+PK(紫)
    0.6N + PK(Milk vetch)
    稻-稻-紫云英,减氮40%
    Rice-rice-winter fallow, 40% reduction of nitrogen application
    909090103.545112.5
    下载: 导出CSV 
    | 显示表格

    早、晚稻分别于2019年4月底(早稻)、7月下旬(晚稻)移栽,7月下旬(早稻)和10月下旬(晚稻)收获。早、晚稻栽插密度分别为2.55×105 、2.50 ×105蔸·hm−2。紫云英种子播种量为37.5 kg·hm−2,在晚稻收获前10 d左右撒播,翌年早稻移栽前10 ~ 15 d翻压,最高翻压量(鲜重)为2.25×104 kg·hm−2,如过多,刈割移走,并记录移走量且留样测定。NPK(紫)、0.8N+PK(紫)和0.6N+PK(紫)年均(2009-2018年)还田鲜紫云英分别为2.11×104、2.14×104和1.97×104 kg·hm−2图1),早稻和晚稻稻草均全部带走。每个处理重复3次,随机区组排列。其他管理措施按当地常规操作进行[21]

    图  1  历年紫云英还田量
    Fig.  1  The amounts of milk vetch returned over the years

    2019年10月晚稻收获后采集耕层0 ~ 20 cm原状土。将采集到的原状土样放入硬质塑料盒,带回实验室进行团聚体分级,采用湿筛法测定[22]。土壤有机碳采用浓硫酸-重铬酸钾消煮-硫酸亚铁滴定法[23]测定。

    分别用平均重量直径(MWD)和几何平均直径(GMD)表征水稳性团聚体稳定性,见公式(1)和(2)[18]

    $$ M W D(m m)=\sum_{i=1}^n X_i W_i $$ (1)
    $$ G M D(m m)=\exp \left[\frac{\displaystyle\sum\nolimits_{i=1}^n w_i \ln x_i}{\displaystyle\sum\nolimits_{i=1}^n w_i}\right] $$ (2)

    式中:Xi$ i $级团聚体组分中上下两级筛孔的平均直径(mm);Wi$ i $级团聚体的百分含量(%)。

    团聚体中有机碳富集系数采用公式(3)计算[24]

    $$ \text { 团聚体中有机碳富集系数 }=\frac{\text { 该级团聚体中有机碳含量 }}{\text { 耕层土壤中有机碳含量 }} $$ (3)

    采用Excel2010和Origin2021进行数据处理与制图,通过DPS单因素和双因素方差分析并采用LSD多重比较法对各处理不同团聚体组分含量及有机碳含量进行显著性检验。

    紫云英还田后,调节氮肥用量显著改变了土壤团聚体组成(图2)。与冬闲处理相比较,NPK(紫)处理能使>2 mm和0.25 ~ 2 mm团聚体含量增加15.3%和3.81%。紫云英还田后,与正常施氮处理相比较,减少氮肥用量使>2 mm团聚体含量显著降低了41.8%~57.6%(P<0.05),但却显著增加了0.053 ~ 0.25 mm和<0.053 mm团聚体含量(P<0.05)。

    注:不同小写字母表示相同团聚体粒级下不同处理之间差异达显著水平(P<0.05)。
    Note: Different lowercase letters indicate significant differences between treatments under the same aggregate size(P<0.05).
    图  2  不同处理土壤团聚体组成
    Fig.  2  Compositions of soil aggregates under different treatments

    MWD、GMD和>0.25 mm团聚体含量常作为团聚体稳定性的重要指标,其值越大,表示团聚体越稳定,越有益于土壤结构的稳定[25]。由表2可见,MWD、GMD和>0.25 mm粒级团聚体含量均以NPK(紫)处理最高。冬种紫云英还田后,减少氮肥用量显著降低了>0.25 mm粒级团聚体含量(P<0.05),0.6N+PK(紫)和0.8N+PK(紫)处理的>0.25 mm粒级团聚体含量较NPK(紫)处理分别显著降低15.7%和21.2%(P<0.05)。0.6N+PK(紫)和0.8N+PK(紫)处理的MWD与GMD较NPK(紫)处理分别降低7.17%、11.3%和33.1%、28.4%。

    表  2  不同处理平均质量直径、平均几何直径和>0 .25mm粒级团聚体含量
    Table  2  Mean weight diameter, geometric mean diameter and >0.25 mm aggregate contents of different treatments
    处理 Treatment>0.25 mm/%MWD/mmGMD/mm
    NPK(闲)NPK(Fallow)53.3±4.76 ab0.62±0.05 a 0.31±0.04 ab
    NPK(紫)NPK(Milk vetch)56.8±2.61 a0.66±0.03 a0.37±0.05 a
    0.6N+PK(紫)0.6N + PK(Milk vetch)47.9±1.21 bc0.61±0.02 a0.25±0.01 b
    0.8N+PK(紫) 0.8N + PK(Milk vetch)44.8±1.95 c0.58±0.03 a0.27±0.02 ab
    注:MWD表示平均重量直径,GMD表示几何平均直径。不同小写字母表示处理间差异显著(P<0.05)。下同。
    Note: MWD stands for mean weight diameter, and GMD stands for geometric mean diameter. Different lowercase letters indicate significant differences between treatmens at 0.05 level (P<0.05). The same is as below.
    下载: 导出CSV 
    | 显示表格

    不同管理措施改变了土壤有机碳在团聚体中分布(图3),与冬闲处理相比较,冬种紫云英还田并减少氮肥用量显著降低了各粒级团聚体中土壤有机碳含量(P<0.05),但冬种紫云英还田各处理间各粒级团聚体中土壤有机碳含量未见显著差异。各处理>2 mm和0.25 ~ 2 mm团聚体中土壤有机碳含量显著高于其他粒径团聚体。不同管理措施和团聚体不同粒径的交互作用对土壤有机碳含量没有产生显著影响。

    注:不同小写字母表示同一团聚体粒级下不同处理(T)之间土壤有机碳含量差异显著(P<0.05);不同大写字母表示不同团聚体粒级(S)间土壤有机碳含量差异显著(P<0.05)。下同。
    Note: Different lowercase letters indicate significant differences of soil organic carbon content between treatments (T) under the same aggregate size at 0.05 level (P<0.05). Different capital letters indicate significant differences of soil organic carbon content between different aggregate sizes (S) at 0.05 level (P<0.05). The same is as below.
    图  3  不同处理土壤团聚体中有机碳含量
    Fig.  3  Organic carbon contents in soil aggregates under different treatments

    土壤有机碳富集系数为土壤团聚体有机碳与全土有机碳含量的比值,表征土壤团聚体对有机碳的固持和保持能力,其数值大于1时优先积累碳元素,小于1时优先分解,大于3时强烈富集,大于等于1.5时相对富集,大于等于0.5小于等于1.5时处于同一水平,小于0.5时相对贫化,小于0.1时强烈贫化[23]。由表3可见,所有处理的有机碳富集系数在0.74 ~ 1.46之间,均随着团聚体粒径的减小而降低,NPK(闲)处理不同粒径团聚体中有机碳富集系数均>1,NPK(紫)、0.8N+PK(紫)和0.6N+PK(紫)处理>2 mm和0.25 ~ 2 mm团聚体中的有机碳富集系数>1,而在0.053 ~ 0.25 mm和<0.053 mm粒径团聚体中的有机碳富集系数<1。NPK(闲)、NPK(紫)和0.8N+PK(紫)处理的>2 mm粒级团聚体中碳富集系数显著高于<0.053 mm粒级团聚体(P<0.05)。不同粒径团聚体中碳富集系数均以NPK(闲)处理高于冬种紫云英还田各处理,0.6N+PK(紫)和0.8N+PK(紫)处理的>2 mm粒级团聚体中碳富集系数显著低于NPK(闲)处理(P<0.05)。冬种紫云英还田各处理团聚体中有机碳富集系数,均随着化学氮肥用量的减少呈降低趋势。

    表  3  不同处理团聚体中有机碳富集系数
    Table  3  Organic carbon enrichment coefficients of aggregates under different treatments
    处理
    Treatment
    团聚体粒径Soil aggregate size
    >2 mm0.25 ~ 2 mm0.053 ~ 0.25 mm<0.053 mm
    NPK(闲)NPK(Fallow)1.46±0.17 aA1.35±0.14 abA1.10±0.11 bcA0.99±0.06 cA
    NPK(紫)NPK(Milk vetch)1.17±0.02 aAB1.16±0.18 aAB0.86±0.07 abA0.79±0.06 bA
    0.8N+PK(紫)0.6N + PK(Milk vetch)1.13±0.12 aAB1.11±0.05 abAB0.85±0.02 abA0.77±0.03 bA
    0.6N+PK(紫)0.8N + PK(Milk vetch)1.05±0.03 aB0.99±0.03 aB0.81±0.04 aA0.74±0.02 aA
    注:不同小写字母表示相同处理不同团聚体粒级间差异显著(P<0.05);不同大写字母表示同一团聚体粒级下不同处理之间差异达显著水平(P<0.05)。
    Note: Different lowercase letters indicate significant differences between different aggregate sizes (P<0.05). Different capital letters indicate significant differences between treatments under the same aggregate size (P<0.05).
    下载: 导出CSV 
    | 显示表格

    根据相关性分析结果(图4),土壤平均重量直径和几何平均直径分别与0.25 ~ 2 mm和>2 mm、0.25 ~ 2 mm团聚体含量呈显著正相关关系(P<0.05),土壤平均重量直径和几何平均直径均与0.053 ~ 0.25 mm、<0.053 mm团聚体含量呈显著负相关关系(P<0.05)。土壤平均重量直径和几何平均直径与团聚体不同粒级中土壤有机碳含量的相关性不显著,0.053 ~ 0.25 mm和<0.053 mm团聚体中有机碳含量与其他粒级中土壤有机碳含量均呈极显著正相关关系(P<0.01)。

    注:P代表百分比;SOC代表土壤有机碳;MWD代表平均重量直径,GMD代表几何平均直径。*代表相关性在0.05水平上显著(P<0.05);**代表相关性在0.01水平上显著(P<0.01)。
    Note: P indicates percentage; SOC indicates soil organic carbon; MWD indicates mean weight diameter, and GMD indicates geometric means diameter. * indicates significant correlation at 0.05 level (P<0.05); ** indicates significant correlation at 0.01 level (P<0.01).
    图  4  土壤团聚体稳定性与团聚体组分及其有机碳含量的相关性
    Fig.  4  Relationship between soil aggregate stability and aggregate composition and organic carbon content

    土壤团聚体组分与稳定性主要受到施肥和耕作制度等的影响[26]。常规施氮情况下,较冬闲,冬种紫云英还田提高了土壤>0.25 mm大团聚体含量(表2),长期种植绿肥还田有利于水稳性大团聚体的形成[12]。这主要是由于跟冬闲相比较,长期冬种紫云英还田后,能够为作物根系生长提高更充足的养分,发达的根系可通过缠绕作用[26],也可通过增加根际微生物量,促进大团聚体的形成和稳定,从而改善土壤结构[27]。同时0.25 ~ 2 mm和>2 mm团聚体质量百分数与MWD和GMD均呈显著正相关关系(图3),因为>0.25 mm团聚体是土壤中最好的结构体,其含量越高,团聚体越稳定,土壤结构越好[28]。而冬种紫云英还田后,土壤大团聚体含量、MWD和GMD随着化学氮肥用量的减少呈下降趋势(表2),可见,紫云英还田下,减少氮肥用量20% ~ 40%不利于土壤团聚体稳定性。这可能是由于近10年减少氮肥投入,紫云英还田量低于NPK(紫)处理,紫云英翻压量不够会导致土壤水稳性大团聚体含量降低及团聚体的稳定性下降[19]。但也有研究表明,耕层土壤水稳性团聚体的稳定性随施氮量的增加逐渐下降[29]。这可能是由于土壤类型和轮作方式等差异所致。

    稳定的团聚体能够增加土壤对有机碳的物理保护,促进有机碳的有效固持。和冬闲处理相比,冬种紫云英还田显著降低了土壤各粒级团聚体中的有机碳含量(图2)。而以往相关的研究表明,冬种紫云英和秸秆协同还田不仅能提高土壤有机碳含量,更有利于有机碳分布于大团聚体(>0.25 mm)中[3031]。导致结果差异的主要原因可能是外源投入的碳氮比不同,小团聚体通过含碳量高的非稳性胶结剂(如微生物、根系、真菌菌丝等)胶结形成大团聚体[32],而胶结剂主要来自土壤有机物的降解,有机物组成的碳氮比是胶结剂的主要影响因素,紫云英单独还田与紫云英配合秸秆和氮肥还田相比较,外源投入碳氮比由18增加至34,使得土壤中有机胶结物显著增加[33]。冬种紫云英还田各处理>2 mm和0.25 ~ 2 mm团聚体中的有机碳富集系数>1,而在0.053 ~ 0.25 mm和<0.053 mm粒径团聚体中的有机碳富集系数<1,是由于水稻土中的有机碳主要受0.25 ~ 2 mm、>2 mm大团聚体的闭蓄保护[30]。冬种紫云英还田相比较冬闲处理,其土壤有机碳富集系数相对较低,这可能是由于紫云英氮素含量高,翻压进入土壤后,改变了土壤碳氮比,本研究中NPK(闲)处理土壤碳氮比为10.9,冬种紫云英还田的处理土壤碳氮比较NPK(闲)处理提高了3.08% ~ 7.99%,而碳氮比是影响土壤有机碳富集程度的关键因素[34]。冬种紫云英还田各处理,不同粒径团聚体中土壤有机碳含量随氮肥用量的减少呈下降趋势,但未呈现显著差异(图2),这和前人的研究结果相似[17],说明不同的氮肥及紫云英配比并非是影响团聚体碳分布的主要因素。

    紫云英还田后,调节氮肥用量能够改变土壤团聚体组成。减少氮肥用量显著降低了大团聚体(>0.25 mm)含量,并降低土壤团聚体稳定性。0.25 ~ 2 mm和>2 mm团聚体质量百分数与MWD和GMD均呈显著正相关关系。冬闲处理的团聚体有机碳含量高于紫云英处理,冬种紫云英还田措施下,不同粒径团聚体中土壤有机碳含量随氮肥用量的减少呈下降趋势。可见,在红壤双季稻田进行冬种紫云英还田,有利于优化土壤结构,但不论减氮与否,在保证有充足的外源碳供应的同时,需调控适宜的外源碳氮比,以增强土壤碳汇功能,从而实现土壤结构稳定和肥力提升。

  • 图  1   历年紫云英还田量

    Figure  1.   The amounts of milk vetch returned over the years

    注:不同小写字母表示相同团聚体粒级下不同处理之间差异达显著水平(P<0.05)。

    Note: Different lowercase letters indicate significant differences between treatments under the same aggregate size(P<0.05).

    图  2   不同处理土壤团聚体组成

    Figure  2.   Compositions of soil aggregates under different treatments

    注:不同小写字母表示同一团聚体粒级下不同处理(T)之间土壤有机碳含量差异显著(P<0.05);不同大写字母表示不同团聚体粒级(S)间土壤有机碳含量差异显著(P<0.05)。下同。

    Note: Different lowercase letters indicate significant differences of soil organic carbon content between treatments (T) under the same aggregate size at 0.05 level (P<0.05). Different capital letters indicate significant differences of soil organic carbon content between different aggregate sizes (S) at 0.05 level (P<0.05). The same is as below.

    图  3   不同处理土壤团聚体中有机碳含量

    Figure  3.   Organic carbon contents in soil aggregates under different treatments

    注:P代表百分比;SOC代表土壤有机碳;MWD代表平均重量直径,GMD代表几何平均直径。*代表相关性在0.05水平上显著(P<0.05);**代表相关性在0.01水平上显著(P<0.01)。

    Note: P indicates percentage; SOC indicates soil organic carbon; MWD indicates mean weight diameter, and GMD indicates geometric means diameter. * indicates significant correlation at 0.05 level (P<0.05); ** indicates significant correlation at 0.01 level (P<0.01).

    图  4   土壤团聚体稳定性与团聚体组分及其有机碳含量的相关性

    Figure  4.   Relationship between soil aggregate stability and aggregate composition and organic carbon content

    表  1   不同处理施肥量

    Table  1   Fertilizations under different treatments kg·hm−2

    处理
    Treatment
    施肥情况
    Fertilizer application
    早稻
    Early rice
    晚稻
    Late rice
    NP2O5K2ONP2O5K2O
    NPK(闲)
    NPK(Fallow)
    稻-稻-冬闲,常规施肥
    Rice-rice-winter fallow, conventional fertilization
    1509090172.545112.5
    NPK(紫)
    NPK(Milk vetch)
    稻-稻-紫云英,常规施肥
    Rice-rice-milk vetch, conventional fertilization
    1509090172.545112.5
    0.8N+PK(紫)
    0.8N + PK(Milk vetch)
    稻-稻-紫云英,减氮20%
    Rice-rice-winter fallow, 20% reduction of nitrogen application
    120909013845112.5
    0.6N+PK(紫)
    0.6N + PK(Milk vetch)
    稻-稻-紫云英,减氮40%
    Rice-rice-winter fallow, 40% reduction of nitrogen application
    909090103.545112.5
    下载: 导出CSV

    表  2   不同处理平均质量直径、平均几何直径和>0 .25mm粒级团聚体含量

    Table  2   Mean weight diameter, geometric mean diameter and >0.25 mm aggregate contents of different treatments

    处理 Treatment>0.25 mm/%MWD/mmGMD/mm
    NPK(闲)NPK(Fallow)53.3±4.76 ab0.62±0.05 a 0.31±0.04 ab
    NPK(紫)NPK(Milk vetch)56.8±2.61 a0.66±0.03 a0.37±0.05 a
    0.6N+PK(紫)0.6N + PK(Milk vetch)47.9±1.21 bc0.61±0.02 a0.25±0.01 b
    0.8N+PK(紫) 0.8N + PK(Milk vetch)44.8±1.95 c0.58±0.03 a0.27±0.02 ab
    注:MWD表示平均重量直径,GMD表示几何平均直径。不同小写字母表示处理间差异显著(P<0.05)。下同。
    Note: MWD stands for mean weight diameter, and GMD stands for geometric mean diameter. Different lowercase letters indicate significant differences between treatmens at 0.05 level (P<0.05). The same is as below.
    下载: 导出CSV

    表  3   不同处理团聚体中有机碳富集系数

    Table  3   Organic carbon enrichment coefficients of aggregates under different treatments

    处理
    Treatment
    团聚体粒径Soil aggregate size
    >2 mm0.25 ~ 2 mm0.053 ~ 0.25 mm<0.053 mm
    NPK(闲)NPK(Fallow)1.46±0.17 aA1.35±0.14 abA1.10±0.11 bcA0.99±0.06 cA
    NPK(紫)NPK(Milk vetch)1.17±0.02 aAB1.16±0.18 aAB0.86±0.07 abA0.79±0.06 bA
    0.8N+PK(紫)0.6N + PK(Milk vetch)1.13±0.12 aAB1.11±0.05 abAB0.85±0.02 abA0.77±0.03 bA
    0.6N+PK(紫)0.8N + PK(Milk vetch)1.05±0.03 aB0.99±0.03 aB0.81±0.04 aA0.74±0.02 aA
    注:不同小写字母表示相同处理不同团聚体粒级间差异显著(P<0.05);不同大写字母表示同一团聚体粒级下不同处理之间差异达显著水平(P<0.05)。
    Note: Different lowercase letters indicate significant differences between different aggregate sizes (P<0.05). Different capital letters indicate significant differences between treatments under the same aggregate size (P<0.05).
    下载: 导出CSV
  • [1]

    WEIDHUNER A,HANAUER A,KRAUSZ R,et al. Tillage impacts on soil aggregation and aggregate-associated carbon and nitrogen after 49 years[J]. Soil and Tillage Research,2021,208:104878. DOI: 10.1016/j.still.2020.104878

    [2]

    ZHANG H Y,NIU L A,HU K L,et al. Long-term effects of nitrogen and phosphorus fertilization on soil aggregate stability and aggregate-associated carbon and nitrogen in the North China Plain[J]. Soil Science Society of America Journal,2021,85 (3):732−745. DOI: 10.1002/saj2.20197

    [3]

    MUSTAFA A,HU X,ABRAR M M,et al. Long-term fertilization enhanced carbon mineralization and maize biomass through physical protection of organic carbon in fractions under continuous maize cropping[J]. Applied Soil Ecology,2021,165:103971. DOI: 10.1016/j.apsoil.2021.103971

    [4] 张彧行,翁白莎,严登华. 基于文献可视化分析的土壤团聚体研究进展[J]. 地球科学进展,2022,37(4):429−438. DOI: 10.11867/j.issn.1001-8166.2022.012

    ZHANG Y H,WENG B S,YAN D H. Research progress of soil aggregates based on literature visualization analysis[J]. Advances in Earth Science,2022,37 (4):429−438. DOI: 10.11867/j.issn.1001-8166.2022.012

    [5] 陈建国,田大伦,闫文德,等. 土壤团聚体固碳研究进展[J]. 中南林业科技大学学报,2011,31(5):74−80. DOI: 10.3969/j.issn.1673-923X.2011.05.013

    CHEN J G,TIAN D L,YAN W D,et al. Progress on study of carbon sequestration in soil aggregates[J]. Journal of Central South University of Forestry and Technology,2011,31 (5):74−80. DOI: 10.3969/j.issn.1673-923X.2011.05.013

    [6] 宋惠洁,朱莉英,杨延安,等. 土壤团聚体组分中碳钾分配对芋头-水稻轮作年限的响应[J]. 土壤与作物,2021,10(4):404−411. DOI: 10.11689/j.issn.2095-2961.2021.04.005

    SONG H J,ZHU L Y,YANG Y N,et al. Responses of carbon and potassium contents in soil aggregates to the duration of taro-rice rotation[J]. Soils and Crops,2021,10 (4):404−411. DOI: 10.11689/j.issn.2095-2961.2021.04.005

    [7] 朱锟恒,段良霞,李元辰,等. 土壤团聚体有机碳研究进展[J]. 中国农学通报,2021,37(21):86−90. DOI: 10.11924/j.issn.1000-6850.casb2020-0604

    ZHU K H,DUAN L X,LI Y C,et al. Research progress of organic carbon in soil aggregates[J]. Chinese Agricultural Science Bulletin,2021,37 (21):86−90. DOI: 10.11924/j.issn.1000-6850.casb2020-0604

    [8] 曹卫东,包兴国,徐昌旭,等. 中国绿肥科研60年回顾与未来展望[J]. 植物营养与肥料学报,2017,23(6):1450−1461. DOI: 10.11674/zwyf.17291

    CAO W D,BAO X G,XU C X,et al. Reviews and prospects on science and technology of green manure in China[J]. Journal of Plant Nutrition and Fertilizer,2017,23 (6):1450−1461. DOI: 10.11674/zwyf.17291

    [9] 张卫建, 张俊, 张会民, 等 稻田土壤培肥与丰产增效耕作理论和技术 [M]. 北京: 科学出版社, 2021.

    ZHANG W J, ZHANG J, ZHANG H M. Theory and technology of paddy soil fertilizer and high yield and efficiency tillage [M]. Beijing: Science Press, 2021.

    [10] 周国朋,谢志坚,曹卫东,等. 稻草高茬-紫云英联合还田改善土壤肥力提高作物产量[J]. 农业工程学报,2017,33(23):157−163. DOI: 10.11975/j.issn.1002-6819.2017.23.020

    ZHOU G P,XIE Z J,CAO W D,et al. Co-incorporation of high rice stubble and Chinese milk vetch improving soil fertility and yield of rice[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33 (23):157−163. DOI: 10.11975/j.issn.1002-6819.2017.23.020

    [11]

    YANG L,ZHOU X,LIAO Y L,et al. Co-incorporation of rice straw and green manure benefits rice yield and nutrient uptake[J]. Crop Science,2019,59 (2):749−759. DOI: 10.2135/cropsci2018.07.0427

    [12] 张钦,于恩江,林海波,等. 连续种植不同绿肥的土壤团聚体碳分布及其固持特征[J]. 中国土壤与肥料,2019(1):71−78. DOI: 10.11838/sfsc.1673-6257.18125

    ZHANG Q,YU E J,LIN H B,et al. Distribution and sequestration of aggregate organic carbon affected by continuous different kind of green manure cultivation[J]. Soil and Fertilizer Sciences in China,2019 (1):71−78. DOI: 10.11838/sfsc.1673-6257.18125

    [13] 庞党伟. 耕作和氮肥互作对耕层土壤理化性质及冬小麦产量的影响 [D]. 泰安: 山东农业大学, 2016: 20-25.

    PANG D W. Effects of interaction between tillage patterns and nitrogen fertilizer treatments on soil physicochemical property and yield of winter wheat [D]. Taian: Shandong Agricultural University, 2016: 20-25.

    [14] 高嵩涓,周国朋,曹卫东. 南方稻田紫云英作冬绿肥的增产节肥效应与机制[J]. 植物营养与肥料学报,2020,26(12):2115−2126. DOI: 10.11674/zwyf.20375

    GAO S J,ZHOU G P,CAO W D. Effects of milk vetch (Astragalus sinicus) as winter green manure on rice yield and rate of fertilizer application in rice paddies in South China[J]. Journal of Plant Nutrition and Fertilizers,2020,26 (12):2115−2126. DOI: 10.11674/zwyf.20375

    [15] 李锐,陶瑞,王丹,等. 减氮配施有机肥对滴灌棉田土壤生物学性状与团聚体特性的影响[J]. 应用生态学报,2017,28(10):3297−3304. DOI: 10.13287/j.1001-9332.201710.029

    LI R,TAO R,WANG D,et al. Effect of mineral N fertilizer reduction and organic fertilizer substitution on soil biological properties and aggregate characteristics in drip-irrigated cotton field[J]. Chinese Journal of Applied Ecology,2017,28 (10):3297−3304. DOI: 10.13287/j.1001-9332.201710.029

    [16] 彭娜,王开峰. 有机肥化肥长期配合施用对稻田土壤团聚性的影响[J]. 江苏农业科学,2009,37(4):326−328. DOI: 10.3969/j.issn.1002-1302.2009.04.133

    PENG N,WANG K F. Effects of long-term combined application of organic fertilizer on soil aggregates in paddy fields[J]. Jiangsu Agricultural Sciences,2009,37 (4):326−328. DOI: 10.3969/j.issn.1002-1302.2009.04.133

    [17] 解钰,朱同彬. 氮肥和秸秆用量对水稻—小麦轮作体系土壤团聚体组分及碳氮分布的影响[J]. 江苏农业科学,2015,43(5):310−314. DOI: 10.15889/j.issn.1002-1302.2015.05.102

    XIE Y,ZHU T B. Effects of nitrogen fertilizer and straw dosage on soil aggregate composition and carbon and nitrogen distribution in rice-wheat rotation system[J]. Jiangsu Agricultural Sciences,2015,43 (5):310−314. DOI: 10.15889/j.issn.1002-1302.2015.05.102

    [18] 崔江辉,崔福柱,薛建福,等. 化肥减施对小麦-高粱系统土壤团聚体分布及其稳定性的影响[J]. 作物杂志,2018(1):126−132. DOI: 10.16035/j.issn.1001-7283.2018.01.020

    CUI J H,CUI F Z,XUE J F,et al. Effects of fertilizer reduction on distribution and stability of soil aggregates based on wheat-sorghum system[J]. Crops,2018 (1):126−132. DOI: 10.16035/j.issn.1001-7283.2018.01.020

    [19] 徐永昊,聂军,鲁艳红,等. 减施化肥下紫云英翻压量对土壤团聚体及铁锰氧化物的影响[J]. 中国土壤与肥料,2020(6):9−18. DOI: 10.11838/sfsc.1673-6257.19490

    XU Y H,NIE J,LU Y H,et al. Effects of different returning amount of Chinese milk vetch on soil aggregates and iron and manganese oxides under reduced fertilizer application[J]. Soil and Fertilizer Sciences in China,2020 (6):9−18. DOI: 10.11838/sfsc.1673-6257.19490

    [20] 刘小粉,刘春增,贾萌萌,等. 化肥减施条件下紫云英翻压量对土壤物理特性和水稻产量的影响[J]. 江苏农业科学,2021,49(16):67−73. DOI: 10.15889/j.issn.1002-1302.2021.16.011

    LIU X F,LIU C Z,JIA M M,et al. Effects of Astragalus vulgaris application amount on soil physical properties and rice yield under condition of reduced chemical fertilizer application[J]. Jiangsu Agricultural Sciences,2021,49 (16):67−73. DOI: 10.15889/j.issn.1002-1302.2021.16.011

    [21] 张璐,蔡泽江,王慧颖,等. 中国稻田土壤有效态中量和微量元素含量分布特征[J]. 农业工程学报,2020,36(16):62−70. DOI: 10.11975/j.issn.1002-6819.2020.16.008

    ZHANG L,CAI Z J,WANG H Y,et al. Distribution characteristics of effective medium and micronutrient element contents in paddy soils of China[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36 (16):62−70. DOI: 10.11975/j.issn.1002-6819.2020.16.008

    [22] 周虎,吕贻忠,杨志臣,等. 保护性耕作对华北平原土壤团聚体特征的影响[J]. 中国农业科学,2007,40(9):1973−1979.

    ZHOU H,LYU Y Z,YANG Z C,et al. Effects of conservation tillage on soil aggregates in Huabei Plain, China[J]. Scientia Agricultura Sinica,2007,40 (9):1973−1979.

    [23] 鲍士旦. 土壤农化分析 [M]. 3版. 北京: 中国农业出版社, 2000.

    BAO S D. Soil and Agricultural Chemistry Analysis [M]. 3rd ed. Beijing: Chinese Agriculture Press, 2000.

    [24] 白璐,蒋福祯,曹卫东,等. 麦后复种绿肥对土壤有机碳及其固持特征的影响[J]. 干旱地区农业研究,2021,39(4):148−154. DOI: 10.7606/j.issn.1000-7601.2021.04.19

    BAI L,JIANG F Z,CAO W D,et al. Effects of multiple cropping of green manure after wheat on soil organic carbon and its sequestration characteristics[J]. Agricultural Research in the Arid Areas,2021,39 (4):148−154. DOI: 10.7606/j.issn.1000-7601.2021.04.19

    [25] 孙雪,张玉铭,张丽娟,等. 长期添加外源有机物料对华北农田土壤团聚体有机碳组分的影响[J]. 中国生态农业学报(中英文),2021,29(8):1384−1396.

    SUN X,ZHANG Y M,ZHANG L J,et al. Effects of long-term exogenous organic material addition on the organic carbon composition of soil aggregates in farmlands of North China[J]. Chinese Journal of Eco-Agriculture,2021,29 (8):1384−1396.

    [26]

    HUANG X L. The role of poorly crystalline iron oxides in the stability of soil aggregate-associated organic carbon in a rice-wheat cropping system[J]. Geoderma,2016,279:1−10. DOI: 10.1016/j.geoderma.2016.05.011

    [27]

    GUGGENBERGER G,et al. Microbial contributions to the aggregation of a cultivated grassland soil amended with starch[J]. Soil Biology and Biochemistry,1999,31 (3):407−419. DOI: 10.1016/S0038-0717(98)00143-6

    [28]

    EYNARD A,SCHUMACHER T E,LINDSTROM M J,et al. Aggregate sizes and stability in cultivated south Dakota prairie ustolls and usterts[J]. Soil Science Society of America Journal,2004,68 (4):1360−1365. DOI: 10.2136/sssaj2004.1360

    [29] 陈津赛,孙玮皓,王广帅,等. 不同施氮量对麦田土壤水稳性团聚体和N2O排放的影响[J]. 应用生态学报,2021,32(11):3961−3968.

    CHEN J S,SUN W H,WANG G S,et al. Effects of different nitrogen application rates on soil water stable aggregates and N2O emission in winter wheat field[J]. Chinese Journal of Applied Ecology,2021,32 (11):3961−3968.

    [30] 宋佳,黄晶,高菊生,等. 冬种绿肥和秸秆还田对双季稻区土壤团聚体和有机质官能团的影响[J]. 应用生态学报,2021,32(2):564−570. DOI: 10.13287/j.1001-9332.202102.023

    SONG J,HUANG J,GAO J S,et al. Effects of green manure planted in winter and straw returning on soil aggregates and organic matter functional groups in double cropping rice area[J]. Chinese Journal of Applied Ecology,2021,32 (2):564−570. DOI: 10.13287/j.1001-9332.202102.023

    [31] 冯颖,温晓兰,石温慧,等. 绿肥化肥配施对土壤团聚体及其有机碳分布的影响[J]. 南方农业,2021,15(19):11−13+21. DOI: 10.19415/j.cnki.1673-890x.2021.19.003

    FENG Y,WEN X L,SHI W H,et al. Effect of combined application of green manure and chemical fertilizer on soil aggregate and organic carbon distribution[J]. South China Agriculture,2021,15 (19):11−13+21. DOI: 10.19415/j.cnki.1673-890x.2021.19.003

    [32]

    ELLIOTT E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils[J]. Soil Science Society of America Journal,1986,50 (3):627−633. DOI: 10.2136/sssaj1986.03615995005000030017x

    [33] 孙天聪,李世清,邵明安. 长期施肥对褐土有机碳和氮素在团聚体中分布的影响[J]. 中国农业科学,2005,38(9):1841−1848. DOI: 10.3321/j.issn:0578-1752.2005.09.019

    SUN T C,LI S Q,SHAO M G. Effects of long-term fertilization on distribution of organic matters and nitrogen in cinnamon soil aggregates[J]. Scientia Agricultura Sinica,2005,38 (9):1841−1848. DOI: 10.3321/j.issn:0578-1752.2005.09.019

    [34] 窦晶鑫,刘景双,王洋,等. 三江平原草甸湿地土壤有机碳矿化对C/N的响应[J]. 地理科学,2009,29(5):773−778. DOI: 10.13249/j.cnki.sgs.2009.05.015

    DOU J X,LIU J S,WANG Y,et al. Effects of amendment C/N ratio on soil organic carbon mineralization of meadow marshes in Sanjiang plain[J]. Scientia Geographica Sinica,2009,29 (5):773−778. DOI: 10.13249/j.cnki.sgs.2009.05.015

  • 期刊类型引用(3)

    1. 赵玉坤,马爱平,靖华,亢秀丽,崔欢虎,席吉龙,黄学芳. 夏闲期玉米压青对旱地麦田土壤水分周年变化的影响. 水土保持研究. 2024(02): 60-67+75 . 百度学术
    2. 胡志华,柳开楼,胡丹丹,宋惠洁,吴艳,徐小林. 有机培肥对中稻-再生稻产量与氮肥利用的影响. 土壤与作物. 2024(03): 314-322 . 本站查看
    3. 付斌,王炽,胡万里,闫辉,倪明,李枝武,陈兴位,陈安强,金平忠,姬为军. 等氮量有机替代水稻种植对水土环境和农学效应的影响. 南方农业学报. 2023(11): 3198-3205 . 百度学术

    其他类型引用(6)

图(4)  /  表(3)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  81
  • PDF下载量:  31
  • 被引次数: 9
出版历程
  • 收稿日期:  2022-04-19
  • 修回日期:  2022-10-23
  • 刊出日期:  2023-02-28

目录

/

返回文章
返回