A Discussion on Advances in Breeding for Super High-yielding Soybean Cultivars
-
摘要: 以提高C3作物大豆光能利用率实现培育超高产大豆新品种的目标为主线,以能量论观点推算大豆产量界限,提出中国大豆超高产育种目标,并从大豆生物量、表观收获指数、生育期、花荚脱落性状、超高产理想株型育种及高光效育种等方面叙述了与超高产大豆育种相关研究的新进展。认为培育和推广超级豆是继有性杂交育种之后,提高大豆综合生产能力,实现大豆产量突破和产业发展的重要途径,超高产理想株型育种和高光效育种是大豆超高产育种的重要途径和方法之一。同时对中国大豆超高产育种的关键科学问题进行了探讨。Abstract: This paper focused on improving the utilization efficiency of solar energy in C3 crop of soybean for obtaining super high-yielding soybean cultivars. The relative upper limit of soybean yield potential was estimated according to the energy transformation theory and then the super high-yielding objectives for various eco-regions in China were set for yield contest program. For achieving the goals,the advances in wide areas related to breeding for super high-yielding soybean,including soybean biomass accumulation,apparent harvest index,growth periods,flower and pod abscission,ideal plant types and photosynthetic efficiency were reviewed to provide a comprehensive understanding on the elements of super high-yielding cultivar development. It is proposed that breeding for ideotype and high utilization efficiency of solar energy is the basis for achieving yield breakthrough in soybean industry with the improved field cultivation and management technology. In addition,the important scientific issues regarding further study on breeding for super high-yielding cultivars were discussed in the present paper.
-
Keywords:
- soybean /
- super high-yielding /
- breeding /
- breeding strategy /
- summary
-
-
[1] 东正昭. 水稻の超多收品种育种の现状と今后の课题[J]. 农业および园艺,1988,63(7):793-799. [2] 徐正进,陈温福,张龙步,等. 日本水稻育种的现状与展望[J]. 水稻文摘,1990,9(5):1-6. [3] 陈温福,徐正进,张龙步,等. 水稻新株型创造与优势利用相结合[J]. 沈阳农业大学学报,1987,22(3):295-304. [4] 陈温福,徐正进,张文忠,等. 北方超级粳稻育种研究进展与前景[J]. 北方水稻,2007(1):1-6. [5] 杜维广,郝廼斌,满为群. 大豆高光效育种[M]. 北京:中国农业出版社,2007. [6] 赵团结,盖钧镒,李海旺,等. 大豆育种研究的进展与讨论[J]. 中国农业科学,2006,39(1):29-37. [7] 户苅义次. 作物的光合作用与物质生产[M]. 北京:科学出版社,1979. [8] 崔继林. 光合作用与生产力[M]. 南京:江苏科学技术出版社,2000. [9] Heitholt J J,Egli D B,Leggett J E,et al. Role of assimilate and carbon-14 photosynthate partitioning in soybean reproductive abortion[J]. Crop Science,1986,26(5):999-1004.
[10] 汪宝卿,慈敦伟,张礼凤,等.同化物供应和内源激素信号对大豆花荚发育的调控[J]. 大豆科学,2010,29(5):878-882. [11] 杜维广,张桂茹,栾晓燕,等. 大豆转化系数的研究Ⅰ.转化系数及产量间的相关分析[J]. 中国油料,1989(1):25-28. [12] 黄中文,赵团结,喻德跃,等. 大豆生物量积累收获指数及产量间的相关与QTL分析[J]. 作物学报,2008,34(6):944-951. [13] 晁毛妮,郝德荣,印志同,等. 大豆生物量与产量组分间的相关及关联分析[J]. 作物学报,2014,40(1):7-16. [14] 黄中文,赵团结,盖钧镒. 大豆不同产量水分生物量积累与分配的动态分析[J]. 作物学报,2009,35(8):1483-1490. [15] Board J E,Modali H. Dry matter accumulation predictors for optimal yield in soybean[J]. Crop Science,2005,45(5):1790-1799.
[16] Orf J H,Chase K,Adler F R,et al. Genetics of soybean agronomic traits:II. Interactions between yield quantitative trait loci in soybean[J].Crop Science,1999,39(6):1652-1657.
[17] Yuan J,Njiti V N,Meksem K,et al. Quantitative trait loci in two soybean recombinant inbred line populations segregating for yield and disease resistance[J]. Crop Science,2002,42(1):271-277.
[18] Kabelka E A,Diers B W,Fehr W R,et al. Putative alleles for increased yield from soybean plant introductions[J]. Crop Science,2004,44(3):784-791.
[19] Guzman P S,Diers B W,Neece D J,et al. QTL associated with yield in three backcross-derived populations of soybean[J]. Crop Science,2007,47(1):111-122.
[20] Palomeque L,Li-Jun L,Li W B,et al. QTL in mega-environments:I. Universal and specific seed yield QTL detected in a population derived from a cross of high-yielding adapted×high-yielding exotic soybean lines[J]. Theoretical and Applied Genetics,2009,119(3):417-427.
[21] Hao D,Cheng H,Yin Z,et al. Identification of single nucleotide polymorphisms and haplotypes associated with yield and yield components in soybean (Glycine max) landraces across multiple environments[J]. Theoretical and Applied Genetics,2012,124(3):447-458.
[22] Bernard R L. Two Major Genes for Time of Flowering and Maturity in Soybeans[J]. Crop Science,1971,11(2):242-244.
[23] Buzzell R I. Inheritance of a soybean flowering response to fluorescent-daylength conditions[J]. Canadian journal of genetics and cytology,1971,13(4):703-707.
[24] Buzzell R I,Voldeng H D. Inheritance of insensitivity to long day length[J]. Soybean Genet Newsl,1980(7):26-29.
[25] McBlain B A,Bernard R L,Cremeens C R,et al. A procedure to identify genes affecting maturity using soybean isoline testers[J]. Crop Science,1987,27(6):1127-1132.
[26] Ray J D,Hinson K,Mankono J E B,et al. Genetic control of a long-juvenile trait in soybean[J]. Crop Science,1995,35(4):1001-1006.
[27] Bonato E R,Vello N A. E6,a dominant gene conditioning early flowering and maturity in soybeans[J]. Genetics and Molecular Biology,1999,22(2):229-232.
[28] Cober E R,Voldeng H D. A New Soybean Maturity and Photoperiod-Sensitivity Locus Linked to E1 and T[J]. Crop Science,2001,41(3):698-701.
[29] Cober E R,Molnar S J,Charette M,et al. A new locus for early maturity in soybean[J]. Crop Science,2010,50(2):524-527.
[30] Ray J D,Hinson K,Mankono J,et al. Genetic control of a long-juvenile trait in soybean[J]. Crop science,1995,35(4):1001-1006.
[31] Cober E R,Tanner J W,Voldeng H D. Genetic control of photoperiod response in early-maturing,near-isogenic soybean lines[J]. Crop science,1996,36(3):601-605.
[32] Cober E R,Tanner J W,Voldeng H D. Soybean photoperiod-sensitivity loci respond differentially to light quality[J]. Crop science,1996,36(3):606-610.
[33] Abe J,Xu D,Miyano A,et al. Photoperiod-insensitive Japanese soybean landraces differ at two maturity loci[J]. Crop Science,2003,43(4):1300-1304.
[34] Xia Z J,Watanabe S,Yamada T,et al. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering[J]. Proc Natl Acad Sci USA,2012,109(32):E2155-E2164.
[35] Watanabe S,Hideshima R,Xia Z J,et al. Map-based cloning of the gene associated with the soybean maturity locus E3[J]. Genetics,2009,182(4):1251-1262.
[36] Watanabe S,Xia Z J,Hideshima R,et al. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering[J]. Genetics,2011,188(2):395-407.
[37] Liu B H,Kanazawa A,Matsumura H,et al. Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene[J]. Genetics,2008,180(2):995-1007.
[38] Liu B H,Watanabe S,Uchiyama T,et al. The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1[J].Plant physiology,2010,153(1):198-210.
[39] Kong F J,Liu B H,Xia Z J,et al. Two coordinately regulated homologs ofFLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean[J]. Plant physiology,2010,154(3):1220-1231.
[40] Wang X Q,XU W H,Ma L G,et al. Requirement ofKNAT1/BP for the development of abscission zones in Arabidopsis thaliana[J]. Journal of Integrative Plant Biology,2006,48(1):15-26.
[41] Butenko M A,Patterson S E,Grini P E,et al.INFLORESCENCE DEFICIENT IN ABSCISSION controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants[J]. The Plant Cell,2003,15(10):2296-2307.
[42] Xu B,Li Z Y,Zhu Y,et al. Arabidopsis genes AS1,AS2,and JAG negatively regulate boundary-specifying genes to promote sepal and petal development[J]. Plant physiology,2008,146(2):566-575.
[43] Shi C L,Stenvik G E,Vie A K,et al.Arabidopsis class I KNOTTED-like homeobox proteins act downstream in the IDA-HAE/HSL2 floral abscission signaling pathway[J]. The Plant Cell,2011,23(7):2553-2567.
[44] Bonaccorso O,Lee J E,Puah L,et al. FILAMENTOUS FLOWER controls lateral organ development by acting as both an activator and a repressor[J]. BMC Plant Biology,2012(1):176.
[45] Li C B,Zhou A L,Sang T,et al.Rice domestication by reducing shattering[J]. Science,2006,311(5679):1936-1939.
[46] Lin Z W,Griffith M E,Li X R,et al.Origin of seed shattering in rice (Oryza sativa L.)[J]. Planta,2007,226(1):11-20.
[47] Konishi S,Izawa T,Lin S Y,et al. An SNP caused loss of seed shattering during rice domestication[J]. Science,2006,312(5778):1392-1396.
[48] Lin Z W,Li X R,Shannon L M,et al. Parallel domestication of the Shattering1 genes in cereals[J]. Nature Genetics,2012,44(6):720-724.
[49] Zhang D,Cheng H,Wang H,et al. Identification of genomic regions determining flower and pod numbers development in soybean (Glycine max L.)[J]. Journal of Genetics and Genomics,2010,37(8):545-556.
[50] Zhang D,Lin C,Cheng H,et al.Quantitative trait loci associated with soybean tolerance to low phosphorus stress based on flower and pod abscission[J]. Plant Breeding,2010,129(3):243-249.
[51] 王欢,孙霞,岳岩磊,等. 东北春大豆花荚脱落性状与SSR标记的关联分析[J]. 土壤与作物,2014,3(1):32-40. [52] 盖钧镒. 美国大豆育种的进展和动向[J]. 大豆科学,1984,3(1):70-80. [53] 苗以农,朱长甫,石连旋,等. 从大豆产量形成生理特点探索特异高产株型的创新[J]. 大豆科学,1999,18(4):342-346. [54] 王岚,孙君明,赵荣娟,等. 大豆超高产品种选育研究进展[J]. 大豆科学,2013,32(5):687-693. [55] 张性坦,赵存,柏惠侠,等. 夏大豆诱处4号公顷产4500kg生理指标研究[J]. 中国农业科学,1996,29(6):46-54. [56] 张性坦,赵存,陈建南,等. 超高产大豆(诱处4号)的某些特性研究[J]. 作物学报,1997,23(3):296-300. [57] 苗以农,朱长甫,石连旋,等.从大豆株型结构和生理生化特点看选育超高产品种的趋势[J]. 大豆科学,1997,16(4):334-338. [58] 魏建军,罗赓彤,张力,等. 中黄35超高产大豆群体的生理参数[J]. 作物学报,2009,35(3):506-511. [59] 盖钧镒,游敏感,邱家驯,等. 大豆高产理想型群体生理基础的探讨[M].南京:江苏科学出版社,1990. [60] 苏中滨,张继成,郑萍,等. 作物高光效株型数字化设计的方法研究[J]. 计算机应用与软件,2008,25(5):269-270,282. [61] 吴琼,齐波,赵团结,等. 高光谱遥感估测大豆冠层生长和籽粒产量的探讨[J]. 作物学报,2013,39(2):309-313. [62] 盖钧镒. 发展我国大豆遗传改良事业解决国内大豆供给问题[J]. 中国工程科学,2003,5(5):1-6. [63] 许忠手,张贤泽. 大豆生理与生理育种[M]. 哈尔滨:黑龙江科学技术出版社,1989. [64] 郝迺斌,谭克辉,那松青,等. C3植物绿色器官PEP羧化酶活性的比较研究[J]. 植物学报,1991,33(9):692-697. [65] 李卫华,卢庆陶,郝乃斌,等. 大豆叶片C4循环途径酶[J]. 植物学报,2001,43(8):805-808. [66] 文自翔,赵团结,丁艳来,等. 中国栽培及野生大豆的遗传多样性、地理分化和演化关系研究[J]. 科学通报,2009,54(21):3301-3310. [67] ConcibidoC V,La Valle B,Mclaird P,et al. Introgression of a quantitative trait locus for yield from Glycine Saja into commercial soybean cultivars[J]. Theorecical and Applied Genetics,2003,106:575-582.
[68] 印志同,宋海娜,孟凡凡,等. 大豆光合气体交换参数的QTL分析[J]. 作物学报,2010,36(1):92-100. [69] Wu R L,Lin M. Functional mapping-how to map and study the genetic architecture of dynamic complex traits[J]. Nature Reviews Genetics,2006,7:229-237.
[70] Zhai H Q,Wang J K. Applied Quantitative Genetics[M]. Beijing:China Agricultural Science and Technology Press,2007.
[71] Wang J K,Pfeiffer W H. Principle of simulation modeling with applications in plant breeding[J]. Sci Agric Sin,2007,40(1):1-12.
[72] Cooper M,Podlich D W,Smith O S. Gene-to-phenotype models and complex trait genetics[J].Australian Journal of Agricultural Research,2005,56(9):895-918.
[73] Houle D,Govindaraju D R,Omholt S. Phenomics:the next challenge[J].Nature Reviews Genetics,2010,11:855-866.
计量
- 文章访问数: 173
- HTML全文浏览量: 16
- PDF下载量: 25